デジタル信号タイミング試験用 BOST の検討

平林 大樹* 荒川 雄太 河内 智 石井 正道 上森 聡史(群馬大学) 佐藤 幸志(光サイエンス) 小林 春夫 新津 葵一 高井 伸和(群馬大学)

Built-Out Self-Test Circuit for Digital Signal Timing

Daiki Hirabayashi*, Yuta Arakawa, Satoru Kawauchi, Masamichi Ishii, Satoshi Uemori

(Gunma University),

Koshi Sato (Hikari Science), Haruo Kobayashi, Kiichi Niitsu, Nobukazu Takai (Gunma University)

Abstract—This paper presents design and measurement results of a sigma-delta ($\Sigma\Delta$) time-to-digital converter (TDC) for high-speed I/O interface circuit or memory interface signal test applications; it can offer good accuracy with small circuitry. We have implemented the $\Sigma\Delta$ TDC using an analog FPGA or a programmable system-on-chip (PSoC) as a built-out self-test (BOST) circuit. We show that the $\Sigma\Delta$ TDC can realize timing measurement with fairly good linearity and its design is relatively easy with PSoC. We also consider a self-calibration method for the overall TDC linearity. Thus our method would be practical.

キーワード: デジタル信号,タイミング,ΣΔTDC, LSI 試験,高速入出力インターフェース,BOST (Keywords, Digital Signal, Timing, ΣΔTDC, LSI Testing, High-Speed I/O Interface, BOST)

1. はじめに

近年DDRメモリインターフェース等での高速IO回路が重 要となってきており、それに伴いその低コスト・高品質テス ト技術が必要になってきている(1)。本論文では2つの繰り返 しクロック間の時間差(DDRメモリでのデータ・クロック間 の時間差等)を高時間分解能・高精度かつ簡単な回路で計測 するためのデジタル信号タイミング試験用built-out self-test (BOST)として、シグマデルタ型タイムデジタイ ザ回路の設計(2)(3)、シミュレーション、実機での検証を行っ た。動作確認のシミュレーションは0.18um CMOS パラメー タでSpectreを用いて行った。また、実機での動作確認はサ イプレス社のprogrammable system-on-chip (PSoC)に実 装して行った。

2. Σ Δ TDC の構成

く2・1>フラッシュ型TDC 図1にフラッシュ型 time-to-digital converter (TDC)回路を示す(2)。1回のイベ ントで2つの信号間の立ち上がりタイミング時間差を測定で きるが、回路規模が大きくなってしまい、時間分解能はゲー ト遅延 τ で制限されてしまう。

Fig.1. Flash-type TDC.

 $\langle 2\cdot 2 \rangle \Sigma \Delta TDC$ 繰り返し信号間の時間差を測定する場 合はシグマデルタ型 TDC ($\Sigma \Delta TDC$)を用いることができ る。測定時間は長くなるが、簡単な回路で細かい時間分解能 で時間間隔を測定することができる。検討した $\Sigma \Delta TDC$ の 全体構成を図 2 に示す。 $\Sigma \Delta TDC$ は遅延素子、マルチプレ クサ、位相比較器、積分器、比較器で構成する。

図3に比較器出力 Dout が0,1 それぞれの場合のタイミン グチャートを示す。クロック信号 CLK1 と CLK2 を入力し、 立ち上がり時間差 Tを測定する。入力された CLK1, CLK2 はそれぞれ比較器出力 Dout に応じて経路が制御される。そ の結果得られる信号をそれぞれ CLK1a, CLK2a とする。位 相比較器によりこれらの信号の時間差 CLKin を出す。この 時間差 CLKin を電圧に変換し、電圧モードで積分し INTout

図 2 $\Sigma \Delta TDC$ アーキテクチャ Fig.2. Architecture of $\Sigma \Delta TDC$.

を出力する。この出力INToutを比較器によりゼロと比較し 最終的な出力Doutを求める。CLK1の立ち上がりタイミング が速い場合には時間差を求めたときに正となるため積分後 の比較器出力は1となり、次のクロックではCLK1は遅延の経 路、CLK2はそのまま信号を通す経路がそれぞれ選択される。 CLK2が速い場合には時間差を求めたときに負となるため積 分後の比較器出力は0となり、選択される経路は逆となる。

入力の時間差に比例して1が出力されるため、比較器から 出力された1の数からクロック間の立ち上がり時間差Tを測 定することができる。

積分型 ADC と同様に、 $\Sigma \Delta TDC$ は測定時間が長いと高時間分解能で時間差 T を測定することができる。また、時間差 T の測定範囲は- $\tau < T < \tau$ である。

3. シミュレーションによる動作確認

Σ Δ TDC の動作を確認するために、SPECTRE でのシミ ュレーションを行った。(この場合はチップ内で BIST とし て実現することを想定している。)シミュレーション回路は 図 4 に示すように、遅延素子、D フリップフロップ、積分器、 ラッチドコンパレータで構成する。プロセス・パラメータは TSMC 社 180nm CMOS を用いており、電源電圧を 1.8V、 入力クロックの周波数を 10MHz としている。遅延素子とし てはインバータチェーンを用いており、遅延値は 1ns である。 積分器は擬似差動構成としており、抵抗 R=10kΩ、キャパシ タ C=10pF としている。積分器のスイッチはキャパシタの放 電を行うために入れており、測定を始める前にスイッチをオ ンとして放電を行う。CLK1, CLK2 間の立ち上がり時間差 T を 0.05ns 刻みで T=-1ns から T=1ns まで変化させ、TDC の コンパレータの比較回数は 40 回となるようにした。

これらの条件でΣΔTDC のシミュレーションを行い、ク ロック間の立ち上がり時間差Tに対する1の出力数を確認し た。出力波形を図5、シミュレーション結果を図6に示す。 出力はデジタル値で得られ、クロック間の立ち上がり時間差 に比例して1の出力数が線形に増加している。そのため、こ の回路を用いて計測を行うことが可能である。T=0.05nsの変 化で出力パルスが1つ変化するため、分解能は50psである。

図 6 Σ Δ TDC シミュレーション結果. 縦軸は 40 回出力あ たりの1の出力数.

4. PSoC による動作確認

 $\Sigma \Delta TDC$ について、PSoC による実機での動作確認を行った。この場合は BOST として実現することを想定している。 実機の写真を図 7 に示し、PSoC に実装した回路を図 8(a)に示す。

- D フリップフロップのQ出力の初期値は、測定の始めに リセットをかけてゼロとする。
- 入力部のマルチプレクサ回路に接続する遅延素子として RC回路を用いた。R=1kΩ、C=0.01 μ Fの時定数で 遅延とした。
- 能動 RC 積分器に用いる抵抗 R とキャパシタ C は外付 けした(R=10kΩ、C=0.1 μ F)。
- 4) 基本動作の確認のため、入力クロックの時間差に対する TDCの1の出力数の変化を正確に測定したい。しかし、 外部から2つの発振器を用いて正確な遅延差の2つの クロック信号を入力するのは大変である。そこで、2つ の入力クロックを PSoC 回路の内部で生成する構成とし た。このクロックは PSoC 内部で遅延差がプログラマブ ルである。また、遅いクロックで動作を追って確認する ため、図 8(b)のように 24MHz のクロックを分周するこ とで 20kHz のクロックを得た。このように生成された 2 つのクロック CLK1, CLK2 間の立ち上がり時間差 T を 41.7ns 刻みで T=-4.17µs から T=4.17µs まで変化させ るようにし、コンパレータの比較回数を可変として測定 を行う。例えば、コンパレータの比較回数 100 回の場合、 デジタル出力は最高で 100 点となる。この回数の限界は 次に示すカウンタによって決まる。
- 5) TDC 出力の 1 の個数のカウントとして、入力したクロ ックの総数を数えるカウンタと出力の 1 の数を数える カウンタの 2 つを用いた。これら 2 つのカウンタと周辺 回路も PSoC 内部に実現した。入力したクロックの総数 を数えるカウンタがある一定の値に達したときに、出力 を数えるカウンタの値を読むことで、TDC のデジタル 出力結果を得ることができる。今回の回路では 16 ビッ トカウンタを用いているため、65,535 点が限界である。

6) 回路の電源電圧は 3.3V である。

これらの条件で $\Sigma \Delta TDC$ の動作確認を行い、クロック間の立ち上がり時間差Tに対するTDCの1の出力数を計測し

た。TDC のコンパレータの比較回数 100 回での測定結果を 図 9(a)に示す。クロック間の立ち上がり時間差に比例して 1 の出力数が変化することがわかる。出力数にはジッタ等によ るばらつきがあるため、線形性が劣化している。

線形性を改善するために、コンパレータの比較回数を増や す(測定時間を長くする)。測定条件を変えずに、コンパレ ータの比較回数を1,000回、65,535回として測定を行った。 その測定結果を図9(b),(c)に示す。コンパレータの比較回数 100回のときと比較して、測定時間を長くし、コンパレータ の比較回数を増やすことで線形性が大きく改善されている ことが確認できる。

以上の結果について、最小二乗法を用いて線形近似直線を 求め、そこから積分非直線性(INL)を計算する。INL は測 定結果と線形近似直線との累積誤差を示す指標であり、0 に 近いことが望ましい。線形近似直線のゲインとオフセットは 以下の式で表すことができる。

ここで N=201 であり、 K_1 から K_4 はそれぞれ以下の式で表 すことができる。

i は入力時間差であり、S(i)はそのときの出力数である。(1) 式から(6)式より、INLを計算する式は以下のようになる。

$$INL(i) = \frac{S(i) - (gain \cdot i + offset)}{gain} \dots (7)$$

この式から求めた INL を図 10 に示す。測定時間を長くする ほど線形性が改善していることが確認できる。

- (b) クロック生成回路と USB、LCD へのリンク
 図 8 PSoC に実装した Σ Δ TDC の回路図
- Fig.8. Schematic of PSoC implements $\Sigma \Delta TDC$. (a) Whole $\Sigma \Delta TDC$. (b) Clock generator of 2 clocks with programmable timing for $\Sigma \Delta TDC$ inputs.

65,535-point output case.

5/6

5. Σ Δ TDC の自己校正

前章で $\Sigma \Delta TDC$ の測定結果について示したが、出力数 65,535 点の場合でも 10%程度の誤差がある。そこで回路内 部で $\Sigma \Delta TDC$ の自己校正を行うことで、BOST としての性 能を高めることを考える。

〈5・1〉デジタル自己校正 デジタル自己校正として、出 力のデジタル値を回路内部で校正し、線形性を向上させる手 法を提案する。PSoC は内部で2つの同期したクロックを生 成することができる。このクロックは PSoC 内部でクロック 時間差が同期プログラマブルであるため、外部からの基準ク ロック一つで正確かつ線形な時間差をプログラマブルに生 成でき、それに基づきΣΔTDCのデジタル出力を各々得る。

その測定結果から線形近似直線を求める。その直線と測定結 果を一致させるために、内部で逆関数のデジタル演算を行い、 補正係数を算出する。BOST として用いる際には、出力結果 に補正係数(逆関数)をかけることで正確な測定を行うこと が可能となる。

〈5・2〉 \tauの補正 \Sigma \Delta TDC の特性変動要因として、遅延 素子 \tau のばらつきがある。 \tau は\Sigma \Delta TDC の時間差 T の入力 範囲(フルスケール)を決定する。先程のデジタル自己校正 と同様に外部からの基準信号一つから内部の2つの同期ク ロックを生成して\Sigma \Delta TDC の校正を行うことで、\tauの絶対 値を推定することができる。

これらの自己校正手法は PSoC の場合、回路の内部でプロ グラムの変更のみで容易に行うことができる。そのため、 Σ Δ TDC を BOST として PSoC に実装することは低コスト化、 高性能化へと繋がる。

6. 結論

本論文では、デジタル信号タイミング試験用 BOST として シグマデルタ型タイムデジタイザ回路の構成と動作を示し、 シミュレーションによる動作確認と実機での動作確認を行 った。

シミュレーションでの動作確認としては 0.18um CMOS パラメータで Spectre を用いて行い、線形な出力が得られる ことを確認した。

実機での動作確認としてはサイプレス社の PSoC を用いて

行った。時間差 T を T=-4.17 μ s から T=4.17 μ s まで 41.7ns 刻みで変化させて測定した結果、線形な出力が得られること を確認した。また、コンパレータの比較回数を増やす(測定 時間を長くする)ことによって線形性が改善されることも確 認した。誤差は 10%程度であり、その誤差をデジタル自己校 正する手法も提案した。

今回行ったことは PSoC でΣ Δ TDC 回路を設計・実装し、 その実機での「基本動作確認」を目的としているため、動作 速度が低く、簡単な回路を用いている。今後は動作速度を向 上させた場合の測定を行い、その上で提案した自己校正によ る線形性の改善やマルチビット化による高性能化について PSoC に実装し、確認を行っていく。

謝辞 有意義な御討論をいただきました、辻将信氏、小林修 氏、松浦達治氏、山口隆弘氏、渡邉雅史氏、塩田良治氏、土 橋則亮氏、梅田定美氏,佐藤正幸氏、志水勲氏に感謝いたし ます。研究をご支援いただいています半導体理工学研究セン ター(STARC)に感謝いたします。

献

文

- J. Moreira, H. Werkmann : "An Engineer's Guide to Automated Testing of High-Speed Interfaces", Artech House (2010)
- (2)上森聡史,土井佑太,小林春夫,小林修、松浦達治、 新津葵一,「シグマデルタ型タイムデジタイザ回路の 検討」電気学会電子回路研究会,ECT-11-077,長崎 (2011年10月20日)
- (3)石井正道、上森聡史、小林春夫、土井佑太、小林修、 松浦達治、新津葵一、「デジタル信号時間差測定用回路の構成の検討」第66回FTC研究会、大分 (2012年1月20日)
- (4) S. Uemori, M. Ishii, H. Kobayashi, Y. Doi, O. Kobayashi, T. Matsuura, K. Niitsu, F. Abe, D. Hirabayashi, "Multi-bit Sigma-Delta TDC Architecture for Digital Signal Timing Measurement", IEEE International Mixed-Signals, Sensors, and Systems Test Workshop, Taipei, Taiwan (May 2012).
- (5) S. Uemori, M. Ishii, H. Kobayashi, Y. Doi, O. Kobayashi, T. Matsuura, K. Niitsu, Y. Arakawa, D. Hirabayashi, Y. Yano, T. Gake, N. Takai, T. J. Yamaguchi, "Multi-bit Sigma-Delta TDC Architecture with Self-Calibration", IEEE Asia Pacific Conference on Circuits and Systems, Kaohsiung, Taiwan (Dec. 2012).